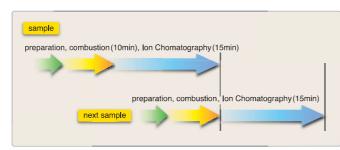
AQF-2100H

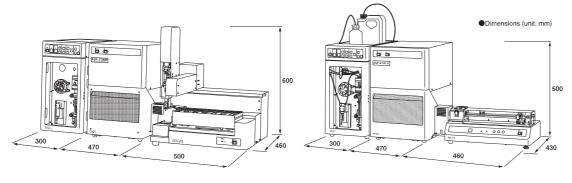

Ion Chromatograph (supplied separately)

Other manufactures have been tested, SHIMADZU, TOSOH, DKK-TOA, etc.

Efficiently controlled combustion scheduling.

Established program controls total analysis and able to start combustion of the next sample to minimize analysis time.

DIONE)


Integrion HPLC System

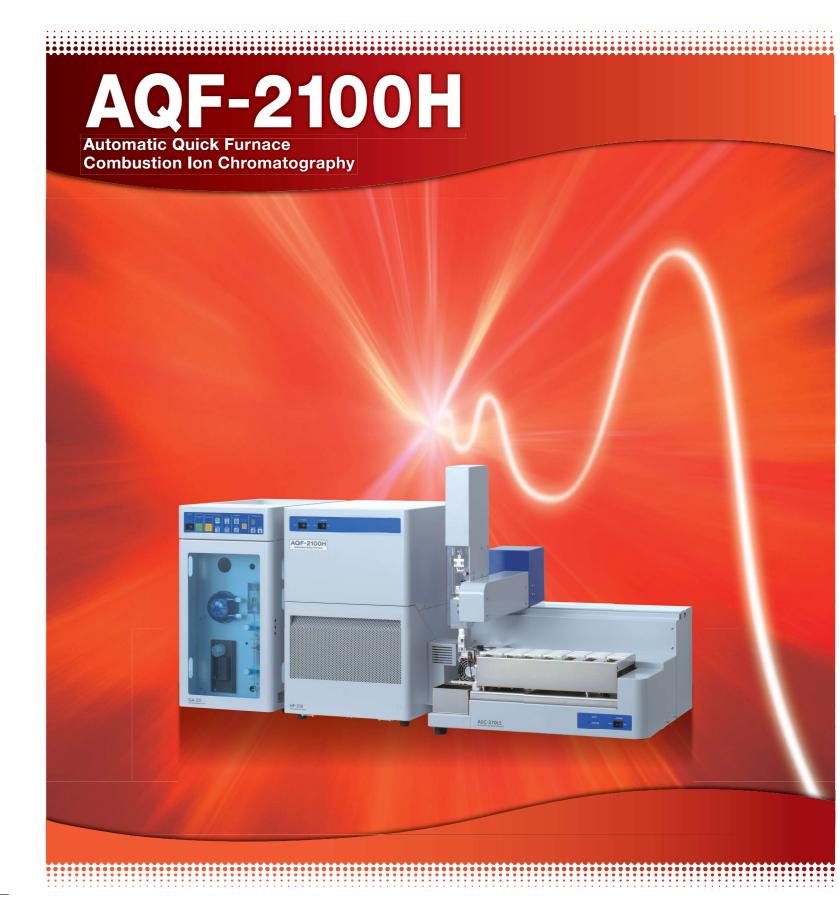
STANDARD SPECIFICATION

Model AQF-2100H

Automatic Quick Furnace, sample combustion preparation for Ion Chromatograph. (consist of electric furnace, gas absorption and sample introduction)

Sample introduction	Automated boat control
Sample	Solid, Liquid
Amount	1 – 150 mg (solid), 5 – 100 μl (liquid)
Sample pyrolysis	High purity quartz tube (ceramic option)
Combustion	Two split electric furnace, max. 1100°C. Temperature individually controlled
Gas	Argon (≥99.98%, 0.2-0.4 MPa), Oxygen (≥99.7%, 0.2 – 0.4 MPa)
Absorbent tube	10 ml (20ml option)
Injection to IC	Loop 100 μl (5, 20, 50, 200 μl option)
Absorbent dispensing	5ml syringe pump
Tube material	Fluoro-resin, PEEK
Signal output	Contact signal to start Ion Chromatograph
Power	HF-210 100-240VAC, 50/60Hz, 1000VA
i owei	GA-211 100-240VAC, 50/60Hz, 50VA
Dimension, Mass	HF-210 320(W) x 430(D) x 500(H) mm, 25kg
Diffiction, Mass	GA-211 250(W) x 430(D) x 500(H) mm, 22kg

Follow instructions in manuals to correctly install, connect and operate the instruments. Contents of catalogues are subject to change


Note: without prior notice when improvements are made in performance. The actual color of the goods may appear different from color printed. All screen images are simulated.

*Company and product names contained herein are the trademarks or registared trademarks of the company concerned.

Nittoseiko Analytech Co., Ltd.

7-10-1 Chuo-rinkan, Yamato, Kanagawa 242-0007, JAPAN Tel: +81(0)46-278-0056

URL: https://www.mccat.co.jp/global

Nittoseiko Analytech Co., Ltd.

Advanced, developed to the second generation. Powerful, fast solution for Sulfur and Halogen (Fluoride, Chloride, Bromide and Iodide) analysis.

Features

SKILL FREE OPERATION NEW NO SOOT COMBUSTION PROGRAM FOR COMPLEX, UNKNOWN SAMPLES

Optimim combustion for various matrix is always crirital. Program have to be taken care to avoid soot and cleaning frequence.

Newly developed Secure Combustion Program (SCP) function can transfer furnace heat to the sample without overheating. Thanks to this feature, complete combustion can be carried out, even complicated samples, without test run. SCP enables sample sizes to be increased to as much as 150 mg, which provide assuring sample homogeneity. SCP is a standard feature of AQF-2100H without extra cost. Combustion Monitor option visualize pyrohydrolytic status on the display which can eliminate needless time without the risk of soot generation.

OLD PROGRAM NEW IDEAL COMBUSTION WITH SCP IDEAL HEAT OLD NEW SCP

PYROHYDROLYTIC COMBUSTION SYSTEM

Controlled pyrohydrolytic combustion enables highly accurate analysis of Fluoride, high concentration Chloride, and Bromide.

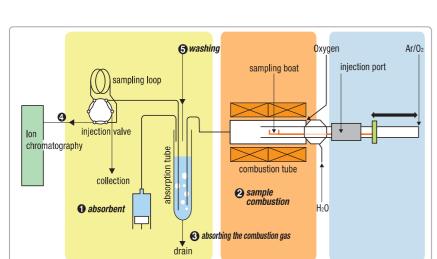
HIGH SENSITIVE ANALYSIS

Thanks to the dedicated gas controller unit, extremely low gas blank is realized. By utilizing high purity quartz tube, trace analysis can be applicable.

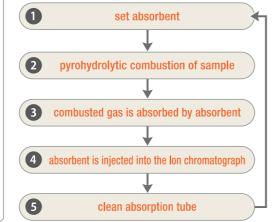
ABSORBENT CORRECTION

Constant volume function enables highly accurate analysis and easier operation. Since there is no longer a need to use internal standards, samples with complex matrices can be measured.

ACCESSIBILITY


Customer can easily access the combustion tube for daily maintenance. Cleaning and set up of tubes are more convenient.

NEW SOFTWARE, FULL AUTOMATIC OPERATION & SHUT DOWN


Fully automatic operation is available from calibration, boat prebake, sample analysis. until auto shutdown.

Measuring Principle

After samples are thermally digested in the Argon atmosphere they are combusted with oxygen and H₂O. Sulfur in the samples changes to SO_x and Halogens turn to Hydrogen Halide and Halogen gas. These elements will be trapped by the absorbent solution, then injected for IC analysis.

Process Flowchart

Ion Chromatograph

■ One combustion program for unknown sample.

No need for internal standard in absorbent.

■ Capable to use by other analyzers, ICP, AA.

■ 40 position sampler

Standard Method

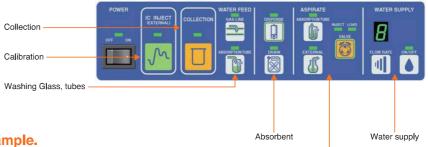
METHOD NUMBER	TITLE	ELEMENTS
ASTM D5987	Standard Test Method for Total Fluorine in Coal and Coke by Pyrohydrolytic Extraction and Ion Selective Electrode or Ion Chromatograph Methods	F
ASTM D7359	Standard Test Method for Total Fluorine, Chlorine and Sulfur in Aromatic Hydrocarbons and ASTM D7359 Their Mixture by Oxidative Pyrohydrolytic Combustion followed by Ion Chromatography Detection (Combustion Ion Chromatography-CIC)	
JIS K7392	Total bromine in waste plastics	Br
JIS R9301 (ISO 2828)	Alumina powder: Determination of Fluorine content	F
JIS R1616	Methods for chemical analysis of fine silicon carbide powders for fine ceramics	F, CI
JIS R1603	Methods for chemical analysis of fine nitride powders for fine ceramics	F, CI
JIS Z7302	Densified refuse derived fuel – test method for total chlorine/sulfur contents	CI, S
JEITA ET-7304A	Definition of Halogen-free Soldering Materials	F, Cl, Br, I
KS M0180	Standard test method for halogen (F,Cl,Br) and Sulfur content by oxidative pyrohydrolytic combustion followed by ion chromatography detection for electronic equipment	F, Cl, Br,S

MAINTENANCE

Open/close furnace: Easier access to the pyrolysis tube in horizontal furnace.

Gas absorption unit: Easy setup by stand alone operation.

SAFETY FEATURE OF MONITORING


Gas flow: To protect from incomplete combustion, preventing irregular combustion.

Furnace: Emergency shutdown of the system in case of over heating.

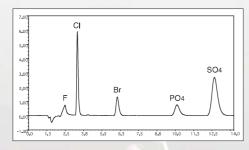
Furnace door: Error message will inform open furnace door open.

GAS ABSORPTION UNIT

Intuitive icon for easy setup and maintenance. Operable by single unit. [Collection] function enables the use of other analyzers, ICP, AA, etc.

AQF-2100H System Configuration Example.

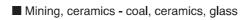
APPLICATION


- Electronics Printed Circuit Board, IC's, solder, plastics, adhesives
- Organic synthesis dye, pigment, organic metal, raw material of medicine, intermediates
- Automobile rubber, plastics

Polyethylene Standard

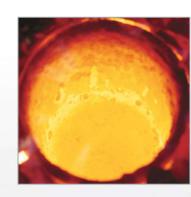
■ EC-680K

sample	C l (ppm)	Br (ppm)	S (ppm)
1	104	96.9	73.8
2	105	95.5	72.8
3	106	97.4	75.5
Avg	105	96.6	74.0
RSD (%)	0.95	1,0	1,8
Certified	102+/-3	96+/-4	76+/-4


ABS, Polyethylene. Br Measurement

sample	DBDE Content (%)	Br result (%)	converted value DBDE (%)
DBDE/ABS A	0.1	0,089	0.11
DBDE/ABS B	1.0	0.87	1,04
DBDE/ABS C	10	8.24	9,9
DBDE/Polyethylene A	0.1	0.079	0.096
DBDE/Polyethylene B	6.0	4.93	5.91

DBDE	:	Decabromodiphenyl	E
------	---	-------------------	---

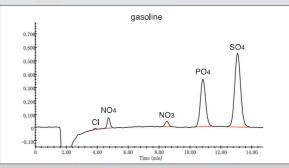

sample	F (ppm)	CI (ppm)	Br (ppm)	S (ppm)
Solder paste	< 5	5.03	36.3	8.11
F l ux	< 5	13.6	< 5	57.9
Paste	< 5	1,62	< 5	_

■ Petroleum - polymer, rubber, fuel oil, lubricant oil, LPG

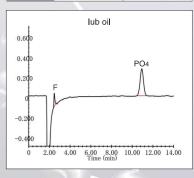
■ Environment, Wastes - ash, waste water, RPF

■ others - lithium cell material, fuel cell

Fluorine, Chlorine, Sulfur in Coal


sample	F (ppm)	CI (ppm)	S (%)
Result	84	22	0.81
Certified	72	20	0.80

standard: CANSPEX2003-1


Sulfur in Fuel TS-100: UVFL

sample	Result (ppm)	Average (ppm)	TS-100 (ppm
Kerosene	53.8/54.8	54.3	54.2
Regular gasoline	47.6/45.3	46.5	46.2
High Octane	7.05/7.55	7.3	7.4

Fluorine in Lubricant Oil

sample	Result (ppm)	Avg (ppm)		
	2,5/2,7	2.6		
В	10.5/10.3	10.4		

RPF (Refuse Paper and Plastic Fuel)

sample	F (%)	CI (%)	S (%)
1	0.007	0.133	0.048
2	0.008	0.148	0.051
3	0.007	0.157	0.050
4	0.007	0.135	0.049
	0.007	0.165	0.050
average	0.008	0.148	0.050
RSD(%)	6.2%	9.4%	2.3%

* With combustion improver

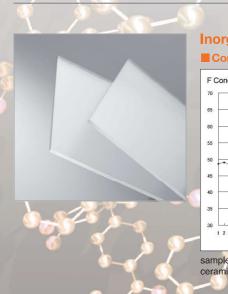
APPLICATION

lodine in Kelp

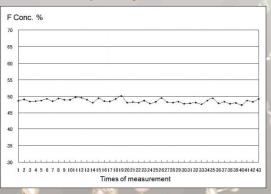
sample	I (ppm)
1	2878
2	2788
Average	2833

Fluorine in Waste Water

	sample	F con. (ppm)	Recovery(%)
	NaBF4 solution	100	99.2
	NaF solution	100	99.1
Ī			


sample	Resu l ts (ppm)	Average
А	10.1/10.3	10
	5.8/6.3	6.0

	12				S-I	benz	yl t	hiou	iron	iun	chl	oric	le			
	11				9			10	1.					946		
	10 -				chlorid			-	Y	4				dollar		
-	9 -				ē			1						Ĭ	ì	
Conductivity [µS/cm]	8 -				- 1			(- 1		
y E	7 -													- 1		
tivit	6 -															
duc	5 -															
ē	4 -				- 11							ate		-1		
	3 -				-	itrite			2			hoso			1	
	2 -				11	2			nitra			40			1	
	11	_	_	_	, ,	-//	-		^	-		,		1		_
	0 +	i	2	3	4	5	6	7	8	9	10	11	12	13	14	15
							1	Time	(min	1						


High Concentration Analysis, Composition Analysis, Organic Sample

Standard Sample	element	Theoretical, %	Analysis, % (n)	RSD, %
S-benzylthiuronium chloride	CI	17.49	17.56 (7)	0.64
3-benzylanaromam chionae	S	15.82	15.59 (7)	0.55
PTFE	F	76	75.6 (3)	1.10
2-lodobenzoic acid	I	51.17	51.17 (7)	0.51
Thiourea	S	42.12	42.11 (7)	0.45
sym-Dipheny l thiourea	S	14.04	13.97 (7)	0.38
Sulfathiazole	S	25.12	25.01 (7)	0,63
(4-chloro-3- trifluoromethyl) phenyl thiourea	F	22,38	22,52 (7)	0,96
	CI	13.92	13.81 (7)	1.03
phonyr anourou	S	12.59	12.48 (7)	0.98
1,2,3,4,5,6, -Hexabromocyclohexane	Br	85.99	86.18 (7)	0.47
2,4-Dinitrochlorobenzene	CI	17.5	17.56 (7)	0.85
4-Chlorobenzoic acid	CI	22.64	22.66 (7)	0.28

Inorganic Fluorine Sample

■ Corrosive Sample Analysis

F (36.7%) S (0.39%) contents 35.5 % 0.39 % 0.35 %

■ Fluorite Standard (NIST)

OPTION

■ASC-270LS

MODEL	Automatic sample changer for solid and liquid samples
Sample	Solid, Liquid
Amount of sample	Solid 150mg Liquid 100µl
Boat, number of sample (Solid)	Ceramic, 49 pos.
Vial, number of sample (Liquid)	4ml: 84 pos. 2ml: 120 pos.
Boat cooling	Electronic cooling
Power	100-240VAC, 50/60Hz, 192VA
Dimension	500 (W) x 460 (D) x 600 (H) mm
Mass	27 kg

ES-211

MODEL	External Solution Selector
Sample	Liquid
Number of sample	Max. 6
Sample injection	PC control

ABC-210

MODEL	ABC-210 Auto Boat Controller			
Sample	Solid, Liquid			
Amount of sample	Solid 150 mg Liquid 100 µl			
Boat	quartz, disposable ceramic			
Boat cooling	Peltier			
Power	100-240VAC, 50/60Hz, 40VA			
Dimension	445 (W) x 250 (D) x 180 (H) mm			
Mass	9ka			

GI-220

MODEL	GI-220 Gas Injector		
Sample	Non-pressurized gas, Volatile liquid		
Injection	10 µl for liquid 25ml by syringe pump for gas		
Carrier	Argon		
Heat	80°C for liquid		
Port	RS-232C COM port		
Power	100-240VAC, 50/60Hz, 70VA		
Dimension	180 (W) x 360 (D) x 500 (H) mm		
Mass	13kg		

■GI-240

MODEL	GI-240 Gas/LPG injector			
Sample	Gaseous	LPG		
Injection	10 ml loop	30 µІ Іоор		
Calibration	Standard gas, Liquefied standard gas.			
Carrier	Argon	Argon		
Max. pressure	0.1 MPa	5 MPa		
Dimension	240 (W) x 300 (D) x 500 (H) mm			
Weight	8kg			

ASC-250L

	*Model GI-250 available
MODEL	ASC-250L Liquid Sample Changer
Sample	Liquid (non-aqueous, aqueous)
Injection	max 200 µl (depend on sample)
Inj. speed	0.4 - 50 μl/sec (depend on sample)
N umber	50 pos in each 2, 4, 6 ml vial tray.
Power	100-240VAC, 50/60Hz, 180VA
Dimension	460 (W) x 320 (D) x 470 (H) mm
Mass	16kg